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The fundamental laws necessary for the mathematical treatment of a
large part of physics and the whole of chemistry are thus completely
known, and the difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.

Paul Dirac

/
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Monte Carlo methods

Method of estimating the value of an
unknown quantity with the help of
inferential statistics.

Computational technique used to model

and analyze complex systems through of
random sampling.

Method in quantum mechanical simulations
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A simple example of Monte Carlo simulation Qﬂ

n=00010, 000, m-- 3.15480
e S G A R L B mo B iy T, T O R R TR

Basic idea of Monte Carlo through the "dartboard method” :
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Variational Monte Carlo

We will use the variational principle where given a hamiltonian:
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The Limitation of VMC

The method relies mostly on giving a really accurate trial wave
function.
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Why use neural networks?

NN'’s figure out how to perform their function on theirown.

Produce reasonable outputs for inputs it has not
beentaught how to deal with.
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What is a neuron?

weights

activation function
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A neuron is a mathematical function that takes in input data, processes it, and passes the
output to other neurons in the network.
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Learning algorith ’

Steps:
. Initialize randomly the weights and bias.
 Calculate the actual output.

- Update the weights given an error metric.
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Perceptron
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------------------------------------------------------- o there is no way for a single perceptron to
converge.
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Multilayer perceptrons

Feedforward artificial neural network,
consisting of fully connected neurons with
a nonlinear activation function.
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Sigmoidal activation function
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Multilayer perceptrons

We can represent a single perceptron as a functional form ¢ . ]RN — R
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Perceptron
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The big advantage of such a representation in matrix form is that it can be leveraged by
parallel computation using a GPU, for instance.
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Universal Aproximation Theorem

Let o be any continuous discriminatory function. Then finite sums of the form

N
G(z) = Zaja(w;-ra: +b;), w; eR" a;b;eR
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Universal Aproximation Theorem

Let f be a bounded and 1.5 .
piecewise continuous function B W—
- == Approximation 12
Then
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What are neural networks?

A neural network is a mapping between an input vector that is processed through
the neurons weights producing an output vector:
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What are neural networks?

Each hidden layer is defined as:

fi(x) : RV — R

----------J

Input Layer

Hidden Layer

where | is the number of layer, a is a nonlinear function, w are the weights and b the bias.
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Backpropagation

Learning representations
by back-propagating errors

David E. Rumelhart®, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA
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We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the

Jo h N J : I—I Opfield Geoffrey E‘ H i N :E;:'- N pet and the desired outpllt vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input

“for foundational discoveries and inventions or output come to represent important features of the task domain,

that enable machine learning and the regularities in the task are captured by the interactions

with artificial neural networks” of these units. The ability to create useful new features distin-

guishes back-propagation from earlier, simpler methods such as

THE ROYAL SWEDISH ACADEMY OF SCIENCES
the perceptron-convergence procedure’.
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Backpropagation
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Backpropagation
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Gradient Descent

Small learning rate Large learning rate
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Neural Network ansatz
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Toy examples

We will apply the previously described methodology to two quantum system
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Lieb Linger model with Harmonic Oscillator

a linear interaction
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Example: 1D Harmonic Oscillator
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Example: 1D Harmonic Oscillator

Neural Network wavefunction ansatz
Arquitecture: Multilayer perceptrons
Number of layers: 2

Number of parameters: 128
Learning rate: 0.01

Iterations: 500

Optimizer: Gradient Descent
Activation function: tanh(x)

Num walkers:100,000

Diego Pefa Angeles (IF UNAM) An Introduction to Machine Learning for Solving Quantum Many-Body Problems 29/10/24 28/40




Example: 1D Harmonic Oscillator
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Easy implementation

import jax

import jax.numpy as jnp
from jax import grad
from jax import random

# Define a feedforward neural network with two hidden layers and hyperbolic tangent activation.
# The network takes in parameters (weights and biases) and an input vector x.

# Returns the summed output for a single input x.

def neural network(params, x):

Feedforward neural network with two hidden layers using hyperbolic tangent activation.
Parameters:
- params: Tuple of network parameters (weights and biases).

- X! Input vector.

Returns:
- Summed output from the network.

wl, bl, w2, b2, w3, b3 = params

hidden 1 = jnp.tanh(jnp.dot(x, wl) + bl) # First hidden layer
hidden 2 = jnp.tanh(jnp.dot(hidden 1, w2) + b2) # Second hidden layer
output = jnp.dot(hidden 2, w3) + b3 # Output layer

return jnp.sum{output)
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Easy implementation

# Compute the Laplacian of the neural network output by differentiating twice with respect to position.
gradient pos = grad(neural network, argnums=1)
laplacian pos = grad(gradient pos, argnums=1)

# Calculate the local energy for a given state, where kinetic energy is computed from the Laplacian.
# Potential energy is defined as the harmonic oscillator potential (1/2 * x"2).
def local energy(params, X):

Calculate the local energy for a given configuration of parameters and input.
Parameters:
- params: Tuple of network parameters (weights and biases).

- X: Input vector representing position.

Returns:
- Local energy as the sum of kinetic and potential energies.

kinetic energy = -0.5 * laplacian pos(params, X)

potential energy = 0.5 * (x**2) # Harmonic oscillator potential
return kinetic energy + potential energy
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Example: 1D Bosonic System

Bosons confined in a harmonic trap with short and long-range interaction

. 1 82 1 ., al
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Neural Network Solutions of Bosonic Quantum Systems in One Dimension

Paulo F. Bedaque,!"* Hersh Kumar,’ and Andy Sheng!'*
! Department of Physics, University of Maryland, College Park, MD 20742

Neural networks have been proposed as efficient numerical wavefunction ansatze which can be
used to variationally search a wide range of functional forms for ground state solutions. These neural
network methods are also advantageous in that more variational parameters and system degrees of
freedom can be easily added. We benchmark the methodology by using neural networks to study
several different integrable bosonic quantum systems in one dimension and compare our results to
the exact solutions. While testing the scalability of the procedure to systems with many particles, we
also introduce using symmetric function inputs to the neural network to enforce exchange symmetries
of indistinguishable particles.
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Example: 1D Bosonic System

We need to force symmetry to the neural network

w(...,wi,...,wj,...):¢(...,m]~,...,mi,...)

N
We use the Girard-Newton identities: U = z T
i=1

{zr} — {ur}t

%b(fl?l,---,il?N) %F(Ul,...,UN)

We look for bound state:  o(zy,...,zx) = F(ud,...,un) - DDA
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Example: 1D Bosonic System

Neural Network wavefunction ansatz
Arquitecture: Multilayer perceptrons
Number of layers: 4

Number of parameters: 537
Learning rate: 0.01

Iterations: 1000

Optimizer: Gradient Descent
Activation function:

T six >0
CELU(z) = {e“’—l siz <0

Num walkers:800,000
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Example: 1D Bosonic System

The Hamiltonian has an analytical solution in the regime of o= —mwg/2
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Example: 1D Bosonic System
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Example: 1D Bosonic System
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Example: 1D Bosonic System
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Conclusions

« NN models provide a robust framework to enhance the VMC method for solving
many-body quantum systems.

« A key advantage is its ability to explore a broad space of potential ground state
wavefunctions, unrestricted by specific functional forms.

. This flexibility enables a more comprehensive search of the solution space for
ground state wavefunctions.

- Neural networks offer convenient scalability, allowing for an easy increase In
variational parameters and particle numbers in the system.
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Thank you for your time




