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The fundamental laws necessary for the mathematical treatment of a
large part of physics and the whole of chemistry are thus completely
known, and the difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.

Paul Dirac
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Monte  Carlo methods

Method of estimating the value of an
unknown quantity with the help of
inferential statistics.

Computational technique used to model
and analyze complex systems through of
random sampling.

Method in  quantum mechanical simulations
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Throw darts which land randomly within the square, 

compute                                                             

=
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A simple example of Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method” 

and compute

 #hits inside the circle 

many many hits

=
# hits inside the square 
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Variational Monte Carlo

We will use the variational principle where given a hamiltonian:
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The Limitation of VMC

The method relies mostly on giving a really accurate trial wave
function.
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Ability to learn:
NN’s figure out how to perform their function on theirown.

Ability to generalize:
Produce reasonable outputs for inputs it has not
beentaught how to deal with.
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Why use neural networks?
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Rosenblatt perceptron 
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What is a neuron?

 A neuron is a mathematical function that takes in input data, processes it, and passes the
output to other neurons in the network.

activation function 

weights

inputs
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Brief History
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Steps:

Initialize randomly the weights and bias.

Calculate the actual output.

Update the weights given an error metric.
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Learning algorithm
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Perceptron

When the dataset is not linearly separable, then
there is no way for a single perceptron to
converge. 

sigmoid function
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Multilayer perceptrons

Feedforward artificial neural network,
consisting of fully connected neurons with
a nonlinear activation function.

Sigmoidal activation function
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We can represent a single perceptron as a functional form 
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Multilayer perceptrons
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Perceptron

The big advantage of such a representation in matrix form is that it can be leveraged by
parallel computation using a GPU, for instance.
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Universal Aproximation Theorem

Let        be any continuous discriminatory function. Then finite sums of the form

are dense in Given                    and                         there is a               such
 that
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Universal Aproximation Theorem

Let    be a bounded and
piecewise continuous function
on 
Then

As                , this approximation
converges to         pointwise.
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What are neural networks?

A neural network is a mapping between an input vector that is processed through
the neurons weights producing an output vector:
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What are neural networks?

Each hidden layer is defined as:

where l is the number of layer, a is a nonlinear function, w are the weights and b the bias.
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Gradient Descent 

learning rate 
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Neural Network ansatz
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Toy examples

We will apply the previously described methodology to two quantum system 

Harmonic OscillatorLieb Linger model with
a linear interaction

An Introduction to Machine Learning for Solving Quantum Many-Body Problems



Diego Peña Angeles (IF UNAM) 29/10/24 27/40

Example: 1D Harmonic Oscillator
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Example: 1D Harmonic Oscillator

Neural Network wavefunction ansatz
Arquitecture: Multilayer perceptrons
Number of layers: 2
Number of parameters: 128
Learning rate: 0.01
Iterations: 500
Optimizer: Gradient Descent
Activation function: tanh(x)
Num walkers:100,000
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Example: 1D Harmonic Oscillator
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Easy implementation
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Easy implementation

Diego Peña Angeles (IF UNAM) 29/10/24 31/40An Introduction to Machine Learning for Solving Quantum Many-Body Problems



Diego Peña Angeles (IF UNAM) 29/10/24 32/40

Example: 1D Bosonic System

Bosons confined in a harmonic trap with short and long-range interaction
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Example: 1D Bosonic System

We need to force symmetry to the neural network

We use the Girard-Newton identities:

We look for bound state:
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Neural Network wavefunction ansatz
Arquitecture: Multilayer perceptrons
Number of layers: 4
Number of parameters: 537
Learning rate: 0.01
Iterations: 1000
Optimizer: Gradient Descent
Activation function:

Num walkers:800,000
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Example: 1D Bosonic System
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Example: 1D Bosonic System

The Hamiltonian has an analytical solution in the regime of                      
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Example: 1D Bosonic System
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Example: 1D Bosonic System
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Example: 1D Bosonic System
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Conclusions
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Thank you for your time


