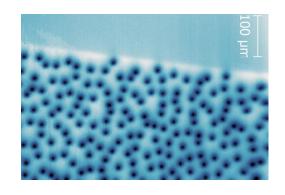
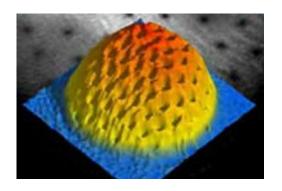


Andrea Richaud

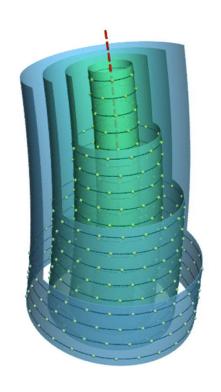
Massive vortices in a binary mixture of Bose-Einstein condensates

Vortices are everywhere





What is a vortex?



A vortex is a region in a fluid in which the flow revolves around an axis line.

Rotating buckets of normal/superfluids

A quantum fluid CANNOT rotate around its own axis as if it was a rigid body!

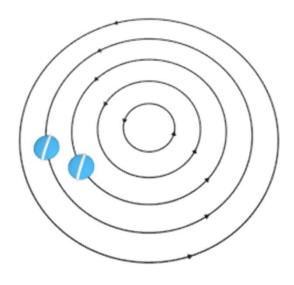
Normal fluid

Quantum fluid

A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

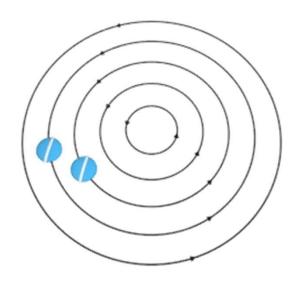
NDREA RICHALID

Rotational vortex



Irrotational vortex

Rotational vortex



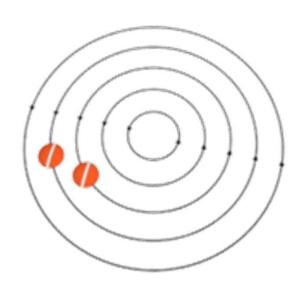
- What you get if you spin a water bucket!
- **Rigid-body**-like rotation:

$$v = \Omega r$$

- A tiny rough tracer ball carried by the flow <u>rotates</u> around its center.
- Vorticity is the same everywhere:

$$\vec{w} := \operatorname{curl}(\vec{v}) = 2\vec{\Omega}$$

Irrotational vortex



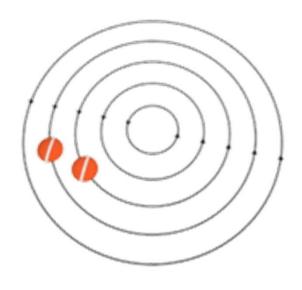
- What you get if you spin a bucket of superfluid!
- Velocity is inversely proportional to distance from axis:

$$v \sim r^{-1}$$

- A tiny rough tracer ball carried by the flow keeps its orientation constant while orbiting.
- Vorticity vanishes everywhere but at the origin:

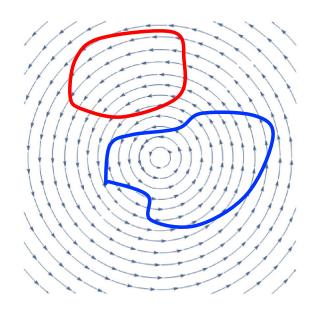
$$\vec{w} := \operatorname{curl}(\vec{v}) \propto \delta^2(\vec{r} - \vec{r_0})$$

Irrotational vortex



Quantum fluids cannot rotate as rigid bodies and angular momentum can enter only in the form of irrotational vortices.

Vortex as a topological excitation



$$\vec{v}(\vec{r}) = \frac{k}{2\pi} \hat{e}_3 \wedge \frac{\vec{r}}{r^2}$$

Consider the circulation of the velocity vector field along a closed path γ

$$\oint_{\gamma} \vec{v} \cdot \mathrm{d}\vec{r} = 0 \qquad \text{if the path does NOT} \\ \text{encircle the singularity}$$

$$\oint_{\gamma} \vec{v} \cdot d\vec{r} = \boxed{n \frac{h}{m}} \text{ if the path does encircle the singularity}$$

This topological label is the vortex strength, where $n \in \mathbb{Z}$.

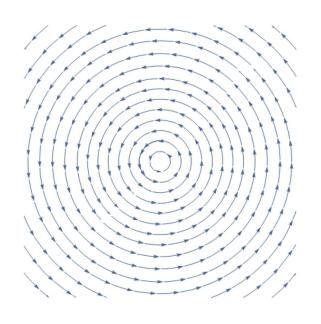
Point-like vortex dynamics

How does a superfluid vortex move?

Assumptions:

- 1) Vortex size << box size;
- 2) Vortex size << inter-vortex distance.

One solitary vortex does not move



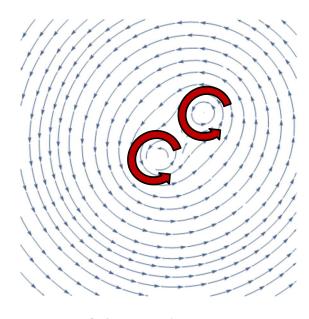
If you have just one vortex in an ideal unbounded sample

 \Downarrow

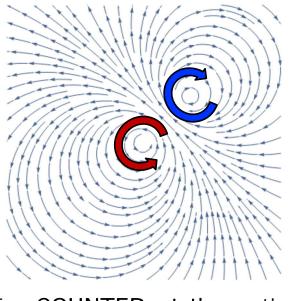
It stays at rest.

Two-vortex systems in unbounded domain

Superposition of the velocity fields generated by each vortex



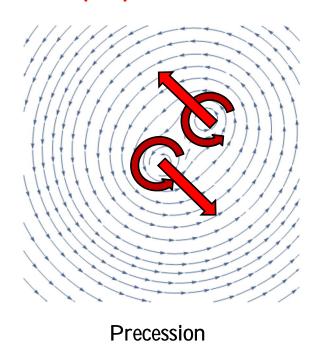
Two **CO-rotating** vortices

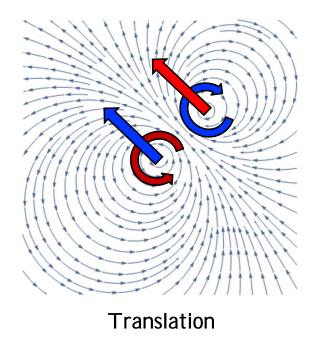


Two COUNTER-rotating vortices

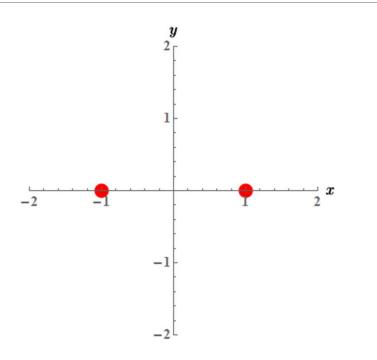
Two-vortex systems in unbounded domain

<u>Superposition</u> of the velocity fields generated by each vortex

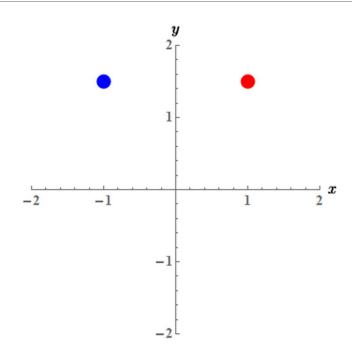




Two-vortex systems in unbounded domain



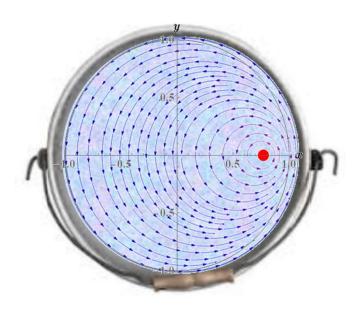
Two **CO-rotating** vortices Precession



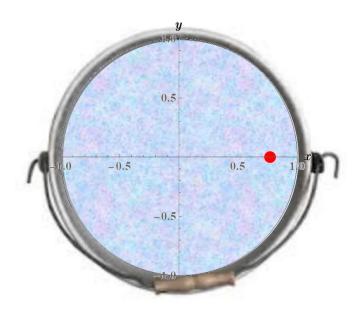
Two **COUNTER-rotating** vortices Translation

ANDREA RICHALID 14

Single vortex in a circular trap



Single vortex in a circular trap

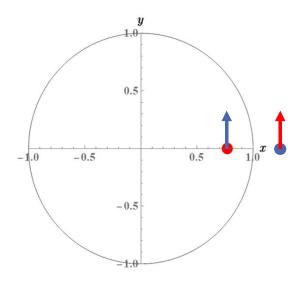


Uniform circular motion:

$$\dot{\theta}_0 = \frac{\hbar}{m} \frac{1}{R^2 - r_0^2}$$

J. Kim and A. L. Fetter, Phys. Rev A 70, 043624 (2004)

Single vortex in a circular trap



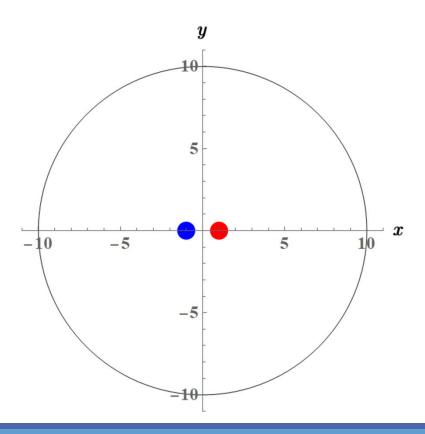
Presence of an "image vortex" at:

$$\begin{cases} x_0' = \frac{R^2}{x_0^2 + y_0^2} x_0 \\ y_0' = \frac{R^2}{x_0^2 + y_0^2} y_0 \end{cases}$$

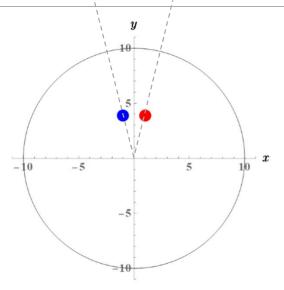
The real vortex orbits because it is effectively dragged by its image vortex.

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

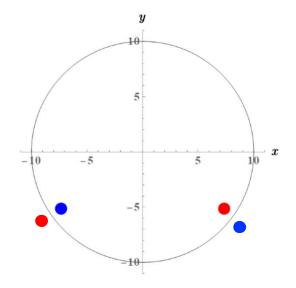
A vortex dipole in a circular trap



A vortex dipole in a circular trap

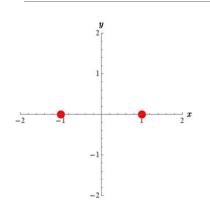


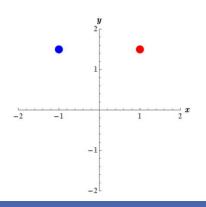
When vortices are far from the boundary, the interaction between real vortices prevail.



When vortices are close to the boundary, the interaction between a vortex and its image prevails.

Point-like Vortex Dynamics





The dynamics of M vortices in an ideal unbounded fluid is ruled by:

$$H_{\infty}(\vec{r}_1, \dots, \vec{r}_M) = -\frac{\rho_*}{4\pi} \sum_{i=1}^M \sum_{j \neq i} k_i k_j \ln\left(\frac{|\vec{r}_i - \vec{r}_j|}{\lambda}\right)$$

$$\{A, B\} = \sum_{i} \frac{1}{\rho_* k_i} \left[\frac{\partial A}{\partial x_i} \frac{\partial B}{\partial y_i} - \frac{\partial B}{\partial x_i} \frac{\partial A}{\partial y_i} \right]$$

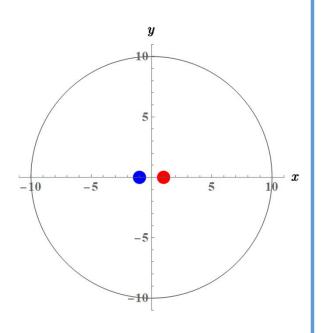
$$\{A, B\} = \sum_{i} \frac{1}{\rho_{*}k_{i}} \left[\frac{\partial A}{\partial x_{i}} \frac{\partial B}{\partial y_{i}} - \frac{\partial B}{\partial x_{i}} \frac{\partial A}{\partial y_{i}} \right]$$

$$\dot{x}_{j} = \{x_{j}, H\} = +\frac{1}{\rho^{*}k_{j}} \frac{\partial H}{\partial y_{j}},$$

$$\dot{y}_{j} = \{y_{j}, H\} = -\frac{1}{\rho^{*}k_{j}} \frac{\partial H}{\partial x_{j}}$$

The components of the position of each vortex constitute canonically conjugate variables.

Walls affect the trajectory of vortices



You can incorporate the presence of walls by adding some extra terms to the Hamiltonian:

$$H = \frac{\rho_*}{4\pi} \left[k_1 k_2 \log \frac{\left(R^2 - x_1 x_2 - y_1 y_2\right)^2 + (x_2 y_1 - x_1 y_2)^2}{R^2 ((x_1 - x_2)^2 + (y_1 - y_2)^2)} + \right]$$

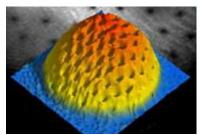
$$+k_1^2 \log \frac{R^2 - x_1^2 - y_1^2}{R^2} + k_2^2 \log \frac{R^2 - x_2^2 - y_2^2}{R^2}$$

$$\dot{x}_j = \{x_j, H\} = +\frac{1}{\rho^* k_j} \frac{\partial H}{\partial y_j},$$
$$\dot{y}_j = \{y_j, H\} = -\frac{1}{\rho^* k_j} \frac{\partial H}{\partial x_j}$$

$$\dot{y}_j = \{y_j, H\} = -\frac{1}{\rho^* k_j} \frac{\partial H}{\partial x_j}$$

Derivation of the Point-Vortex model

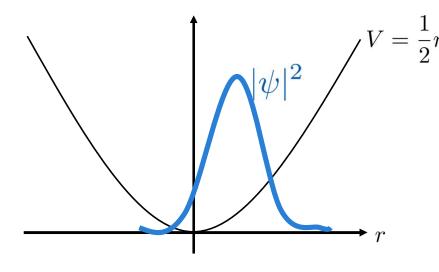
How to go from the Gross-Piataevskii (GP) framework to an effective point-like model?



$$H = \int \left[-\frac{\hbar^2}{2m} \psi^* \Delta \psi + V(\vec{r}) |\psi|^2 + \frac{g}{2} |\psi|^4 \right] d^2 r$$

$$H_{\infty}(\vec{r}_1, \dots, \vec{r}_M) = -\frac{\rho_*}{4\pi} \sum_{i=1}^M \sum_{j \neq i} k_i k_j \ln\left(\frac{|\vec{r}_i - \vec{r}_j|}{\lambda}\right)$$

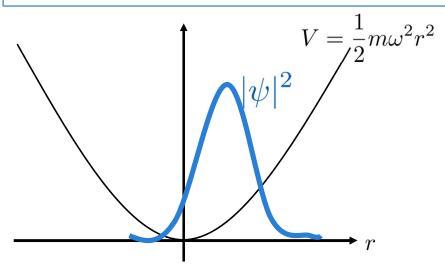
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



Instead of focusing on the full field $\psi(x,t)$, one can keep only some notable time-dependent variational parameters:

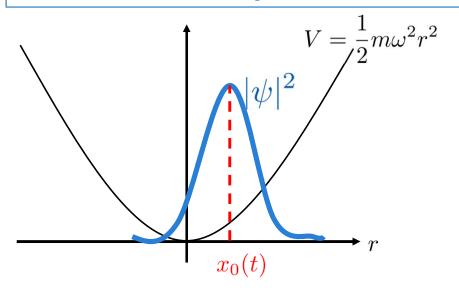
$$\psi(x,t) = A(t)e^{-\frac{[x-x_0(t)]^2}{2\sigma^2(t)} + ix\alpha(t) + ix^2\beta(t)}$$

V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



$$\psi(x,t) = A(t)e^{-\frac{[x-x_0(t)]^2}{2\sigma^2(t)} + ix\alpha(t) + ix^2\beta(t)}$$

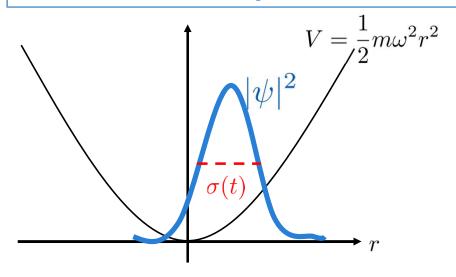
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



$$\psi(x,t) = A(t)e^{-\frac{\left[x - \left(x_0(t)\right)^2}{2\sigma^2(t)} + ix\alpha(t) + ix^2\beta(t)\right]}$$

Center of the Gaussian

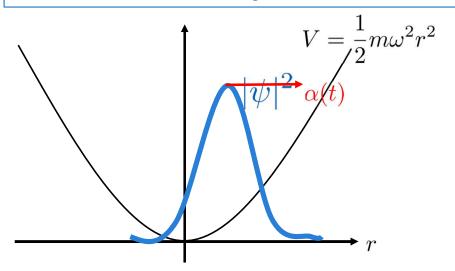
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



$$\psi(x,t) = A(t)e^{-\frac{[x-x_0(t)]^2}{2\sigma^2(t)} + ix\alpha(t) + ix^2\beta(t)}$$

Width of the Gaussian

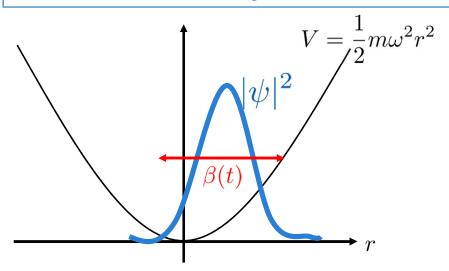
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



$$\psi(x,t) = A(t)e^{-\frac{[x-x_0(t)]^2}{2\sigma^2(t)} + ix\alpha(t) - ix^2\beta(t)}$$

"Translational Velocity" of the Gaussian

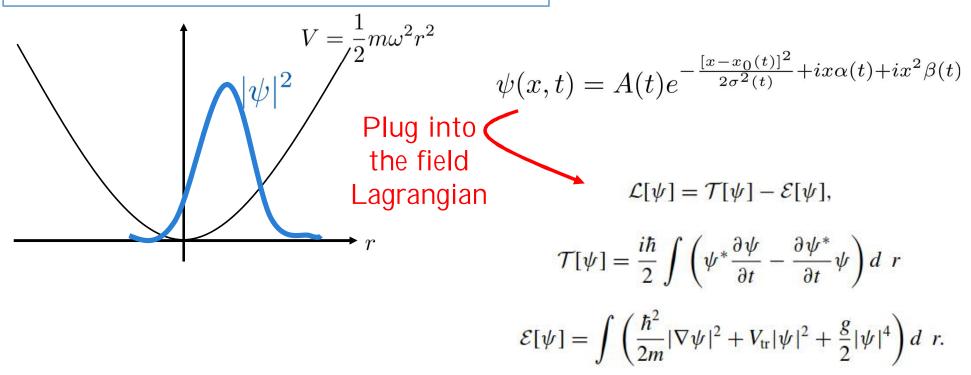
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



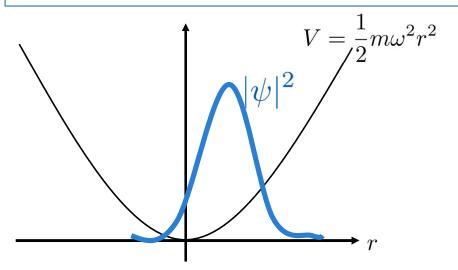
$$\psi(x,t) = A(t)e^{-\frac{[x-x_0(t)]^2}{2\sigma^2(t)} + ix\alpha(t) + ix^2\beta(t)}$$

"Expansion/contraction Velocity" of the Gaussian

V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)



V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)

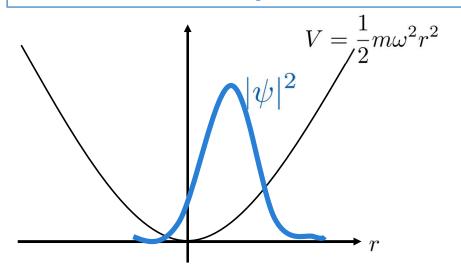


$$\mathcal{L}[\psi] = \mathcal{T}[\psi] - \mathcal{E}[\psi],$$

Integrate the spatial variable of the field and remain with an effective classical Lagrangian depending only on the chosen time-dependent variational parameters:

$$L = L\left(x_0(t), \sigma(t), \alpha(t), \dot{\alpha}(t), \beta(t), \dot{\beta}(t)\right)$$

V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)

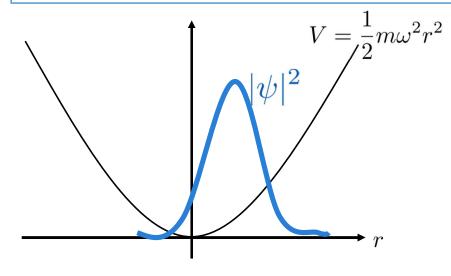


$$L = L\left(x_0(t), \sigma(t), \alpha(t), \dot{\alpha}(t), \beta(t), \dot{\beta}(t)\right)$$

Write the Euler-Lagrange equations:

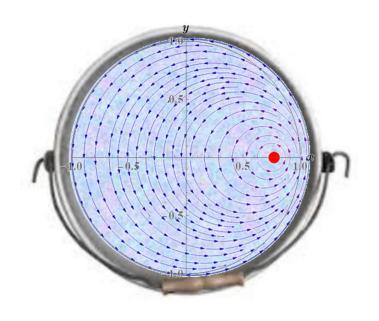
$$\begin{cases} \ddot{x}_0 + \omega^2 x_0 = 0 \\ \ddot{\sigma} + \omega^2 \sigma = \frac{\hbar^2 + cg}{m^2 \sigma^3} \end{cases}$$

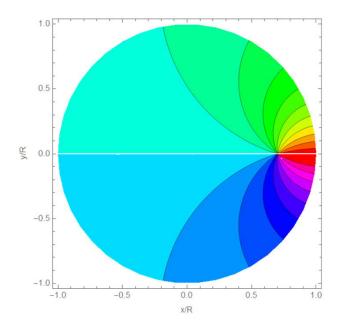
V. Perez-Garcia et al., Phys. Rev. Lett 77, 5320 (1996)

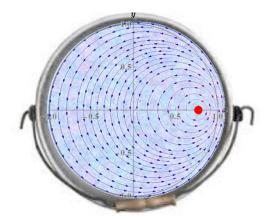


$$\begin{cases} \ddot{x}_0 + \omega^2 x_0 = 0 \\ \ddot{\sigma} + \omega^2 \sigma = \frac{\hbar^2 + cg}{m^2 \sigma^3} \end{cases}$$

One is thus provided with the (approximated) dynamics of the real wavefunction!







Instead of focusing on the full field $\psi(x,t)$, one can keep only some notable time-dependent variational parameters:

$$\psi(x,y,t) = \rho(x,y)e^{i\left[+1\arctan\left(\frac{y-y_0(t)}{x-x_0(t)}\right)-1\arctan\left(\frac{y-y_0'(t)}{x-x_0'(t)}\right)\right]}$$

$$\rho(x,y) = \begin{cases} \rho_0 & \text{for } x^2 + y^2 \le R^2, \\ 0 & \text{for } x^2 + y^2 > R^2 \end{cases}$$

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

$$x_0' = \frac{R^2}{x_0^2 + y_0^2} x_0$$
 Position of the image vortex
$$y_0' = \frac{R^2}{x_0^2 + y_0^2} y_0$$

$$y_0' = \frac{R^2}{x_0^2 + y_0^2} y_0$$

$$\psi(x,y,t) = \rho(x,y)e^{i\left[+1\arctan\left(\frac{y-y_0(t)}{x-x_0(t)}\right)-1\arctan\left(\frac{y-y_0'(t)}{x-x_0'(t)}\right)\right]}$$

Plug into the field Lagrangian

$$\mathcal{L}[\psi] = \mathcal{T}[\psi] - \mathcal{E}[\psi],$$

$$\mathcal{T}[\psi] = \frac{i\hbar}{2} \int \left(\psi^* \frac{\partial \psi}{\partial t} - \frac{\partial \psi^*}{\partial t} \psi \right) d^2 r$$

$$\mathcal{E}[\psi] = \int \left(\frac{\hbar^2}{2m} |\nabla \psi|^2 + V_{\rm tr} |\psi|^2 + \frac{g}{2} |\psi|^4 \right) d^2 r.$$

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

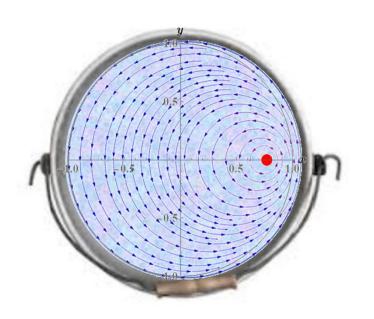
$$\mathcal{L}[\psi] = \mathcal{T}[\psi] - \mathcal{E}[\psi],$$

Integrate the spatial variable of the field and remain with an effective classical Lagrangian depending only on the chosen time-dependent variational parameters:

$$L = L(r_0, \theta_0, \dot{\theta}_0)$$

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

TDVL for a single vortex in a bucket



$$L = L(r_0, \theta_0, \dot{\theta}_0)$$

Compute the two Euler-Lagrange equations:

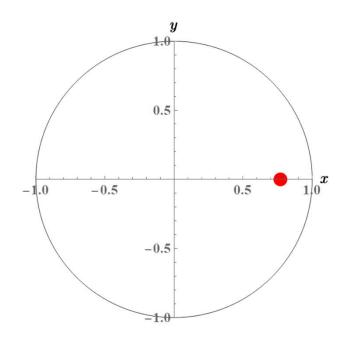
$$\dot{r}_0 = 0$$

$$\dot{\theta}_0 = \frac{\hbar}{m(R^2 - r_0^2)}$$

Signature of a uniform circular motion!

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

TDVL for a single vortex in a bucket



$$L = L(r_0, \theta_0, \dot{\theta}_0)$$

Compute the two Euler-Lagrange equations:

$$\dot{r}_0 = 0$$

$$\dot{\theta}_0 = \frac{\hbar}{m(R^2 - r_0^2)}$$

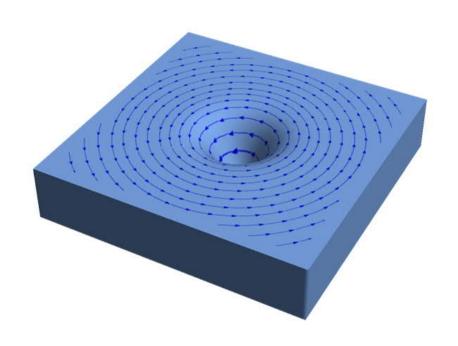
Signature of a uniform circular motion!

J. Kim and A. L. Fetter, Phys. Rev. A 70, 043624 (2004)

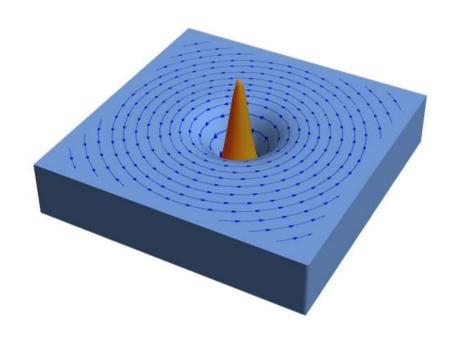
From massless to massive vortices

[A. Richaud, V. Penna, R. Mayol, M. Guilleumas, Phys. Rev. A 101, 013630 (2020)][A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)]

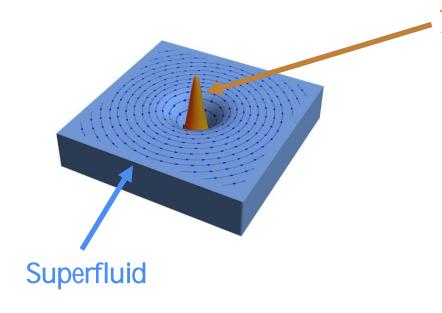
Vortices: just empty holes?



Traditionally, the core is represented as a funnel-like <u>hole</u> around which the superfluid exhibits a swirling flow, a sort of *tornado* in the corresponding wavefuction.

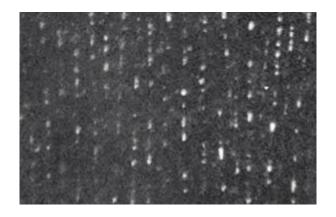


Actually, the vortex core turns out to be commonly filled by particles!

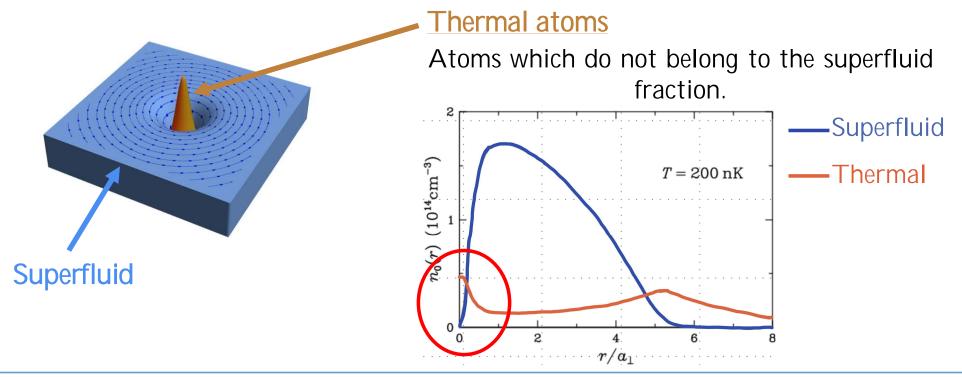


Tracers particles

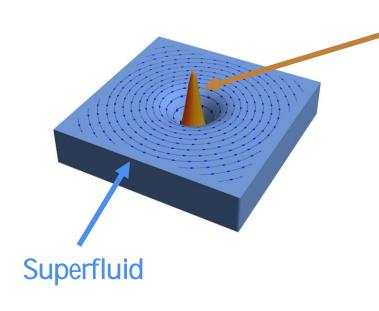
Experimentalists use particles as "vorticity tracers", e.g. in liquid helium.



G. P. Bewley et al., Nature 441, 588 (2006)



A. Griffin, T. Nikuni, E. Zaremba, *Bose-Condensed Gases at Finite Temperature*, Chap. 9, Cambridge University Press (2009)

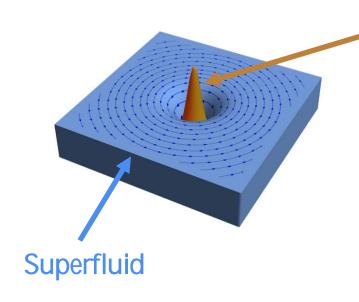


Quasi-particle bound states

In Fermionic superfluids, due to pair-breaking excitations, vortices' cores are filled up with quasiparticle bound states even at zero temperature.

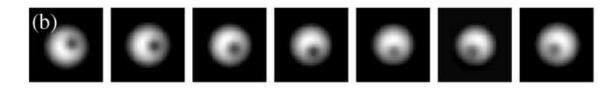
N. B. Kopnin et al., Phys. Rev. B 44, 9667 (1991)

W. J. Kwon et al., Nature 600, 64 (2021)



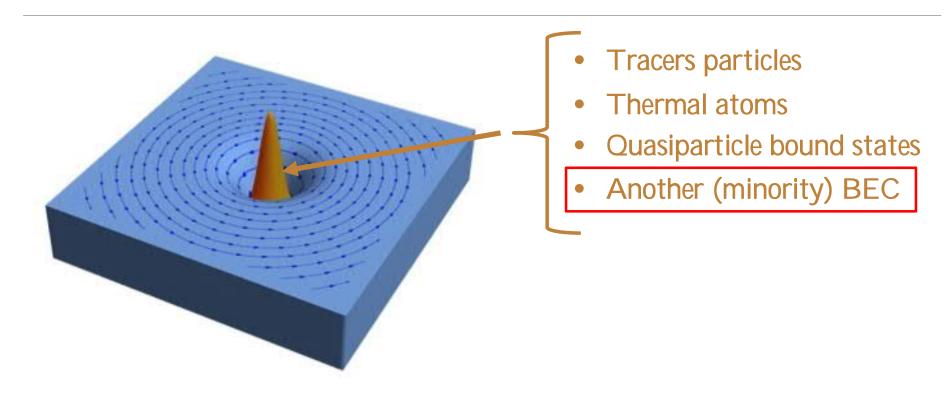
A second (minority) component

One of the first vortices ever observed in a BEC, had a core filled by another component!



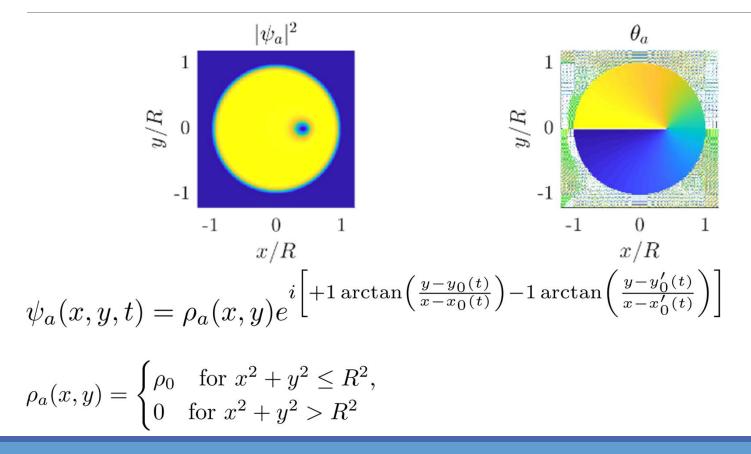
The two components were two different internal states of ⁸⁷Rb.

B. P. Anderson et al., Phys. Rev. Lett. 85, 2857 (2000)



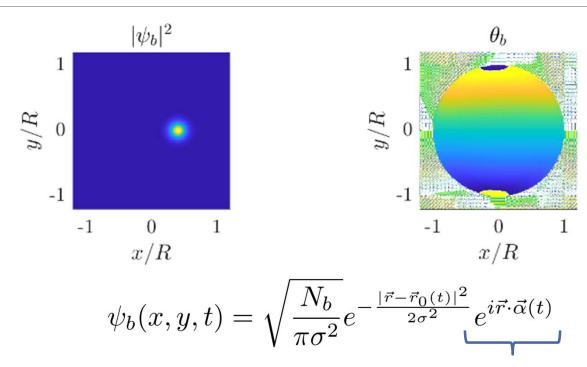
A. Richaud, V. Penna, R. Mayol, M. Guilleumas, Phys. Rev. A 101, 013630 (2020)

A. Richaud, V. Penna, A. L. Fetter, Phys. Rev. A 103, 023311 (2021)



Position of the image vortex

$$x'_0 = \frac{R^2}{x_0^2 + y_0^2} x_0$$
$$y'_0 = \frac{R^2}{x_0^2 + y_0^2} y_0$$



This term allows the Gaussian peak to have a non-zero velocity

$$\psi_a(x,y,t) = \rho_a(x,y)e^{i\left[+1\arctan\left(\frac{y-y_0(t)}{x-x_0(t)}\right)-1\arctan\left(\frac{y-y_0'(t)}{x-x_0'(t)}\right)\right]}$$

$$\psi_b(x,y,t) = \sqrt{\frac{N_b}{\pi\sigma^2}} e^{-\frac{|\vec{r} - \vec{r}_0(t)|^2}{2\sigma^2}} e^{i\vec{r} \cdot \vec{\alpha}(t)}$$

Notice that, in our time-dependent variational ansatz, the center of species-a vortex is assumed to always coincide with the center of species-b Gaussian peak:

$$\vec{r}_0(t) := (x_0(t); y_0(t))$$

This is motivated by the assumed strong immiscibility of the two components!

$$\psi_a(x,y,t) = \rho_a(x,y)e^{i\left[+1\arctan\left(\frac{y-y_0(t)}{x-x_0(t)}\right)-1\arctan\left(\frac{y-y_0'(t)}{x-x_0'(t)}\right)\right]}$$

$$\psi_b(x,y,t) = \sqrt{\frac{N_b}{\pi\sigma^2}} e^{-\frac{|\vec{r}-\vec{r}_0(t)|^2}{2\sigma^2}} e^{i\vec{r}\cdot\vec{\alpha}(t)}$$

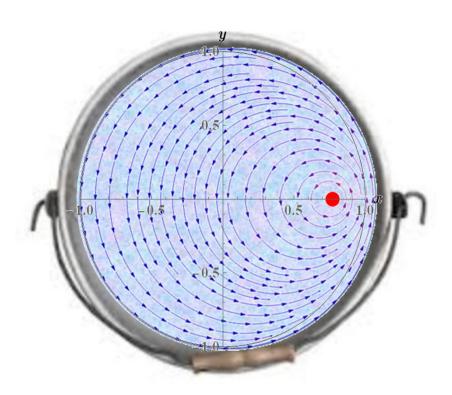
Plug into the field Lagrangian $\mathcal{L}[\psi_a, \psi_b] = \mathcal{L}_a[\psi_a] + \mathcal{L}_b[\psi_b]$

$$\mathcal{L}[\psi_a, \, \psi_b] = \mathcal{L}_a[\psi_a] + \mathcal{L}_b[\psi_b]$$

Integrate the spatial variables of the field and remain with an effective classical Lagrangian depending only on the chosen time-dependent variational parameters:

$$L = L(r_0, \dot{r}_0, \dot{\theta}_0, \dot{\theta}_0)$$

Notice that, as opposed to the massless case, now the effective point-like Lagrangian depends also on the radial velocity.



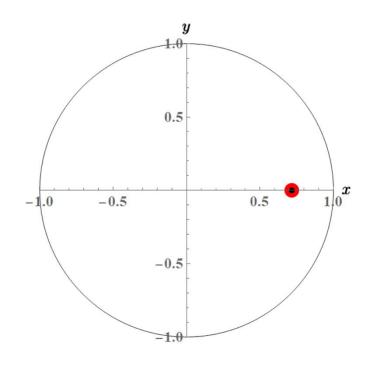
$$L = L(r_0, \dot{r}_0, \theta_0, \dot{\theta}_0)$$

Compute the two Euler-Lagrange equations:

$$2m\pi\ddot{r}_0 = -r_0 \left[\frac{k^2 \rho_*}{r_0^2 - R^2} + 2\pi\dot{\theta}_0(k\rho_* - m\dot{\theta}_0) \right]$$

$$mr_0\ddot{\theta}_0 = \dot{r}_0(k\rho_* - 2m\dot{\theta}_0)$$

These equations tell us that the motion is not simply a uniform circular one!



$$L = L(r_0, \dot{r}_0, \theta_0, \dot{\theta}_0)$$

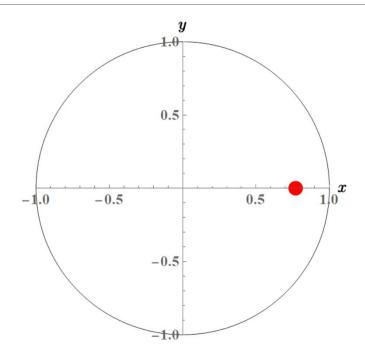
Compute the two Euler-Lagrange equations:

$$2m\pi\ddot{r}_0 = -r_0 \left[\frac{k^2 \rho_*}{r_0^2 - R^2} + 2\pi\dot{\theta}_0(k\rho_* - m\dot{\theta}_0) \right]$$

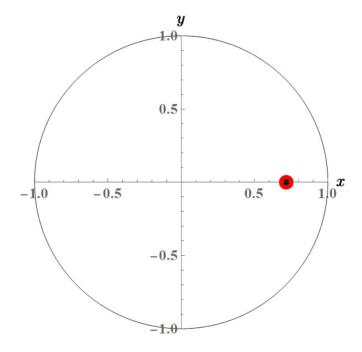
$$mr_0\ddot{\theta}_0 = \dot{r}_0(k\rho_* - 2m\dot{\theta}_0)$$

These equations tell us that the motion is not simply a uniform circular one!

Massless vs Massive Vortices



Massless → Only uniform circular orbits



Massive → Radial oscillations superimposed to circular orbits.

Gross-Pitaevskii simulations

$$\Psi^{T} = (\psi_{a}, \psi_{b})$$

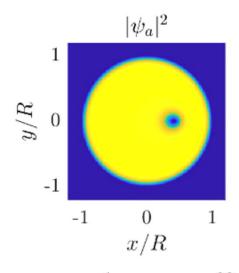
$$i\hbar \frac{\partial \Psi}{\partial t} = \mathcal{H}\Psi$$

$$\mathcal{H} = \begin{pmatrix} H_{a} & 0\\ 0 & H_{b} \end{pmatrix}$$

$$H_{a} = -\frac{\hbar^{2}\nabla^{2}}{2m_{a}} + V_{\text{tr}}^{a} + \frac{g_{a}N_{a}}{d_{z}}|\psi_{a}|^{2} + \frac{g_{ab}N_{b}}{d_{z}}|\psi_{b}|^{2}$$

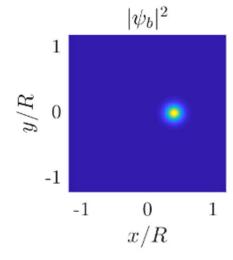
$$H_b = -\frac{\hbar^2 \nabla^2}{2m_b} + V_{\text{tr}}^b + \frac{g_{ab} N_a}{d_z} |\psi_a|^2 + \frac{g_b N_b}{d_z} |\psi_b|^2$$

Assumed parameters



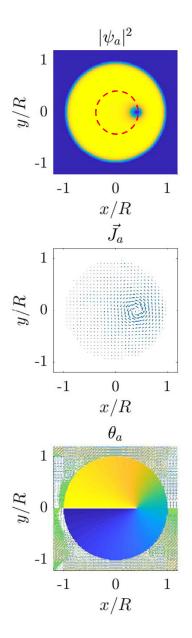
$$N_a = 5 \times 10^4$$
 atoms of ²³Na

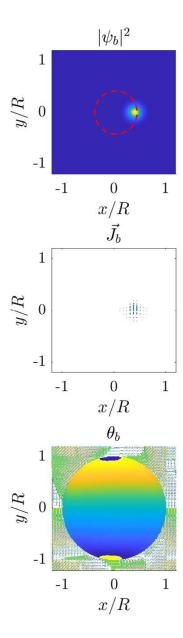
$$R = 50\,\mu m$$



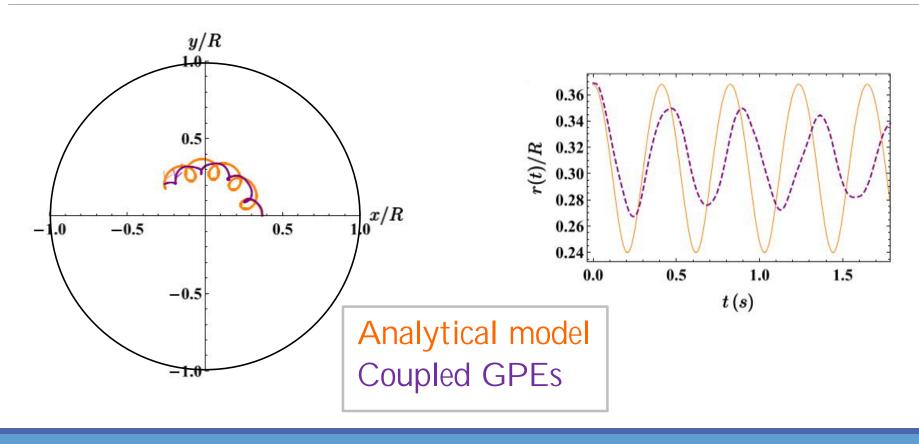
$$N_b = 1 \times 10^3$$
 atoms of ³⁹K

$$\frac{g_{ab}}{\sqrt{g_a g_b}} = 1.25$$





Comparison GPE vs analytical model

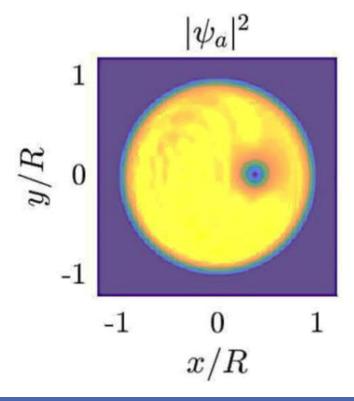


Comparison GPE vs analytical model

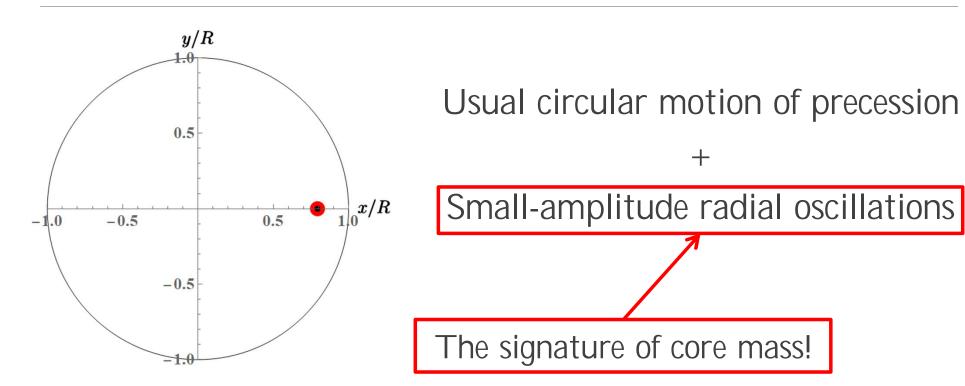
The agreement is good...

... but our analytical approach did not capture a possibly important ingredient:

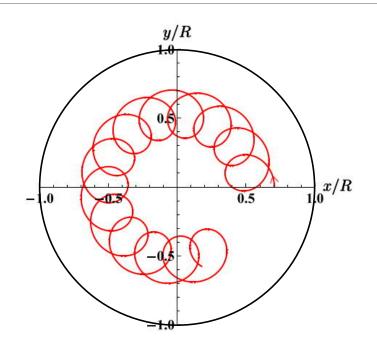
the emission of sound waves.



Signature of the core mass

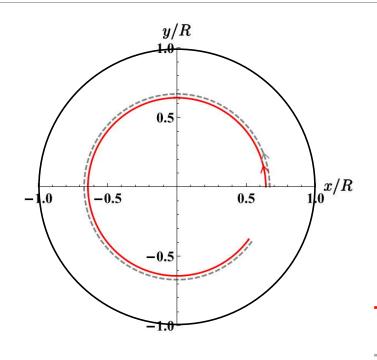


Possible dynamical regimes



Flower-like orbits (superposition of uniform circular orbits and small radial oscillations)

Possible dynamical regimes

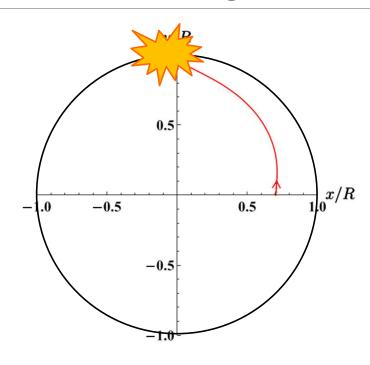


Uniform circular orbits exist provided that position and velocity match a precise condition.

Orbit radius changed by core mass.

— Massive-vortex orbit
— Massless-vortex orbit

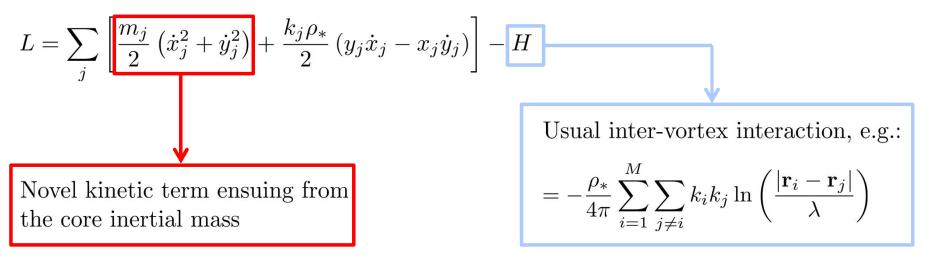
Possible dynamical regimes



If big, core mass can push the vortex to collide against the outer wall.

Massive vortices and massive charges in 2D

Effective Lagrangian of the Massive Point-Vortex Model:



Upon adding the core mass, x_i and y_i are no longer canonically conjugate!

Each coordinate will be associated to an actual momentum p_{x_i} and p_{y_i} .

Massive vortices and massive charges in 2D

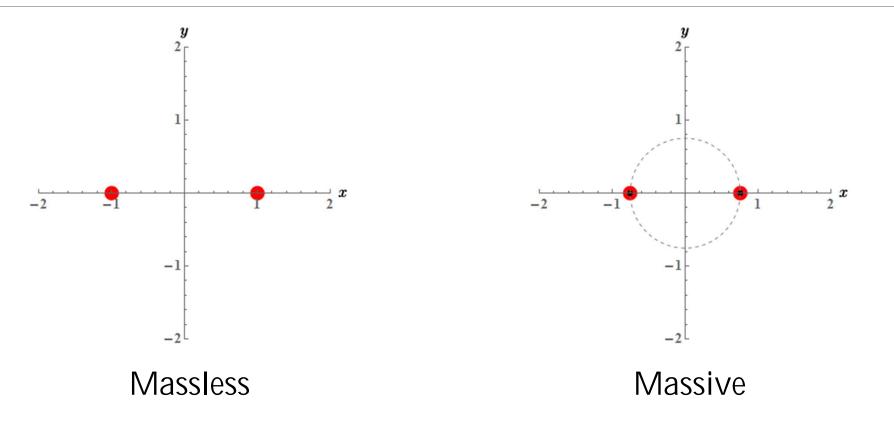
Effective Lagrangian of the Massive Point-Vortex Model:

$$L = \sum_{j} \left[\frac{m_j}{2} \left(\dot{x}_j^2 + \dot{y}_j^2 \right) + \frac{k_j \rho_*}{2} \left(y_j \dot{x}_j - x_j \dot{y}_j \right) \right] + \frac{\rho_*}{4\pi} \sum_{i=1}^{M} \sum_{j \neq i} k_i k_j \ln \left(\frac{|\mathbf{r}_i - \mathbf{r}_j|}{\lambda} \right)$$

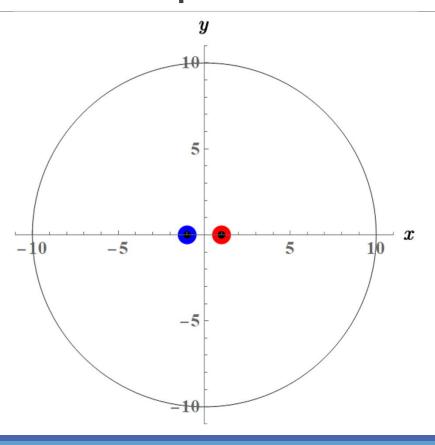
Lagrangian of M massive charges in 2D:

$$L = \sum_{i=1}^{M} \left[\frac{m|\vec{v}_i|^2}{2} - \frac{q_i}{2} B \left(y_i v_{x,i} - x_i v_{y,i} \right) \right] - \frac{1}{2} \sum_{i=1}^{M} \sum_{j \neq i} q_i q_j \ln \frac{|\vec{r}_i - \vec{r}_j|}{\lambda}$$

Massless vs Massive vortex pairs

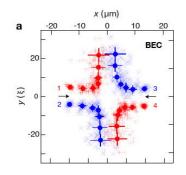


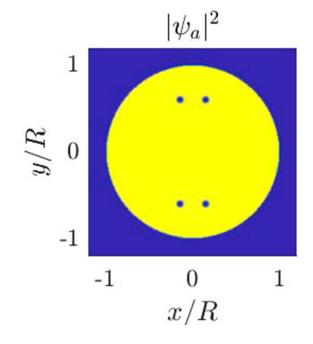
Massive vortex dipole



Experimental observation?

Experimental observation of small oscillations (the signature of inertial mass)?



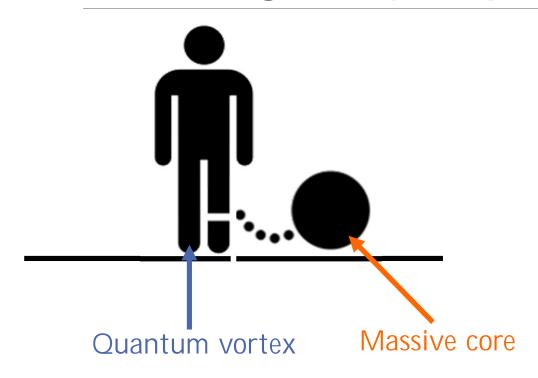


W. J. Kwon et al., Nature 600, 64 (2021)

Massive-core-driven collisions

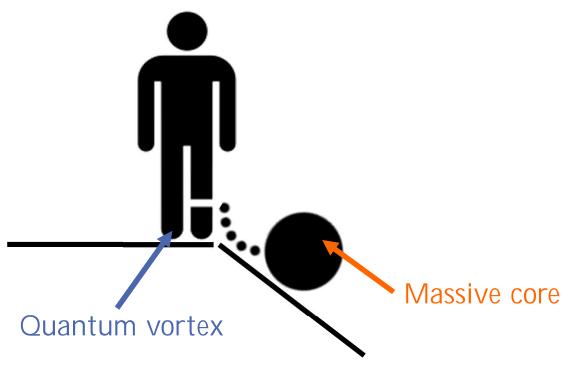
[A. Richaud, G. Lamporesi, M. Capone, A. Recati, to be published.]

A change of perspective



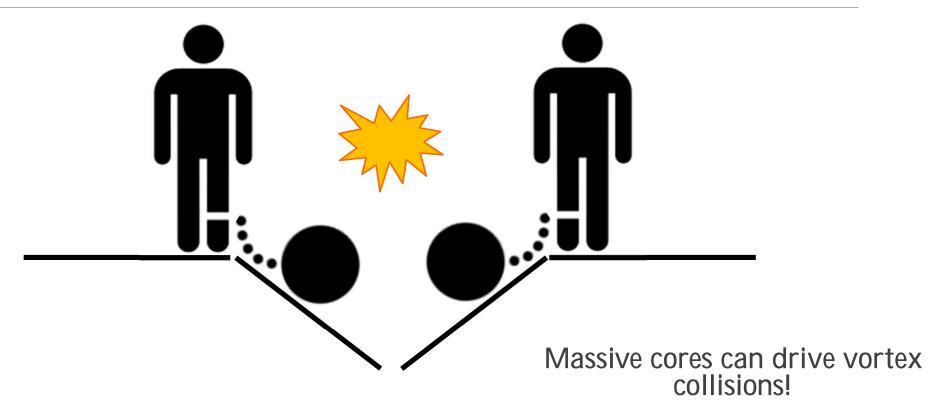
So far, the massive core has played a 'passive' role, meaning that it is like a <u>burden</u> which quantum vortices, deliberately or accidentally, have to live with.

A change of perspective

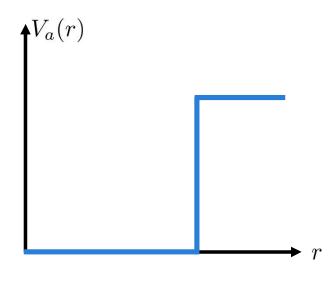


But the massive core can actually drive the hosting vortex!

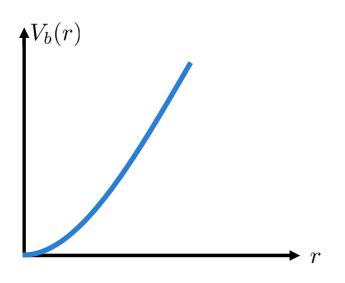
A change of perspective



Species-selective traps

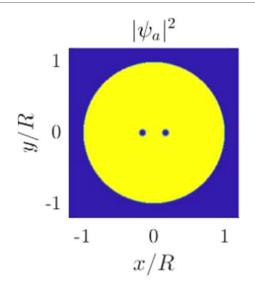


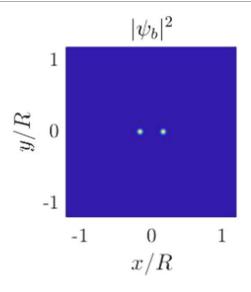
Species-a feels a hard-wall circular potential well



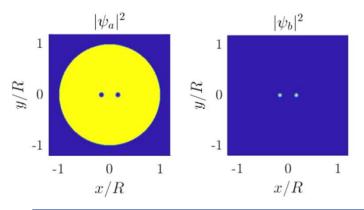
Species-b feels a harmonic potential

Massive Point-Vortex Model





Massive Point-Vortex Model



$$L = \sum_{j=1}^{2} \left[\frac{m_j}{2} (\dot{x}_j^2 + \dot{y}_j^2) + \frac{k_j \rho_*}{2} (y_j \dot{x}_j - x_j \dot{y}_j) \right] -$$

$$\frac{\rho_*}{4\pi} \left\{ k_1 k_2 \log \frac{|R^2 - z_1 \bar{z}_2|^2}{|R(z_1 - z_2)|^2} + k_1^2 \log \left(1 - \frac{|z_1|^2}{R^2} \right) + k_2^2 \log \left(1 - \frac{|z_2|^2}{R^2} \right) \right\} + \sum_{j=1}^2 \frac{1}{2} m_j \omega_b^2 (x_j^2 + y_j^2)$$

—— Usual Superfluid Vortex Dynamics in a circular box

____ Inertial term ensuing from the core mass

_ Harmonic trapping of species-b cores

Massive Point-Vortex Model

$$L = \sum_{j=1}^{2} \left[\frac{m_j}{2} (\dot{x}_j^2 + \dot{y}_j^2) + \frac{k_j \rho_*}{2} (y_j \dot{x}_j - x_j \dot{y}_j) \right] -$$

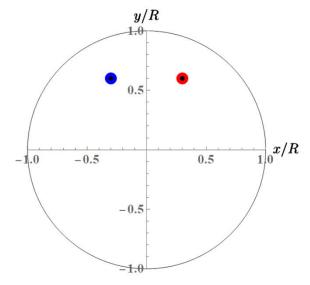
$$\frac{\rho_*}{4\pi} \left\{ k_1 k_2 \log \frac{|R^2 - z_1 \bar{z}_2|^2}{|R(z_1 - z_2)|^2} + k_1^2 \log \left(1 - \frac{|z_1|^2}{R^2} \right) + k_2^2 \log \left(1 - \frac{|z_2|^2}{R^2} \right) \right\} + \sum_{j=1}^2 \frac{1}{2} m_j \omega_b^2 (x_j^2 + y_j^2)$$

Euler-Lagrange Equations:

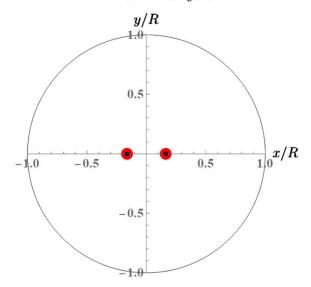
$$m_j \ddot{\vec{r}}_j = k_j \rho_* \vec{u}_3 \wedge \dot{\vec{r}}_j + \rho_* \frac{k_j}{2\pi} \left[k_i \frac{\vec{r}_j - \vec{r}_i}{|\vec{r}_j - \vec{r}_i|^2} + k_j \frac{\vec{r}_j}{R^2 - r_j^2} + k_i \frac{R^2 \vec{r}_i - r_i^2 \vec{r}_j}{R^4 - 2R^2 \vec{r}_i \vec{r}_j + r_i^2 r_j^2} \right] - m_j \omega_b^2 \vec{r}_j,$$

Predictions of the Massive Point Vortex Model

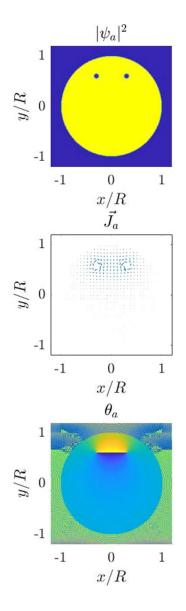
$$m_j \ddot{\vec{r}}_j = k_j \rho_* \vec{u}_3 \wedge \dot{\vec{r}}_j + \rho_* \frac{k_j}{2\pi} \left[k_i \frac{\vec{r}_j - \vec{r}_i}{|\vec{r}_j - \vec{r}_i|^2} + k_j \frac{\vec{r}_j}{R^2 - r_j^2} + k_i \frac{R^2 \vec{r}_i - r_i^2 \vec{r}_j}{R^4 - 2R^2 \vec{r}_i \vec{r}_j + r_i^2 r_j^2} \right] - m_j \omega_b^2 \vec{r}_j,$$

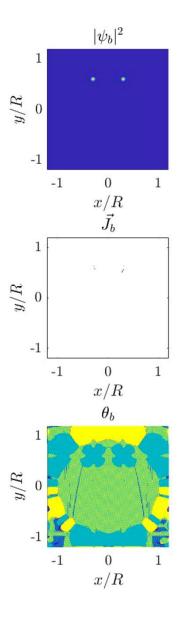


Pair of counter-rotating massive vortices.

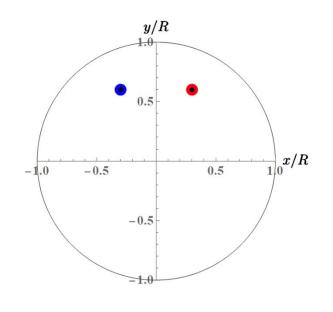


Pair of co-rotating massive vortices.



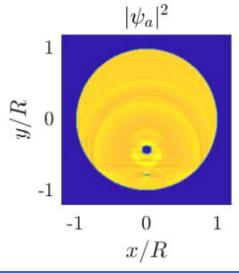


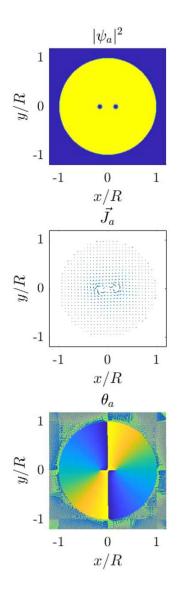
Collision of vortex/antivortex pair

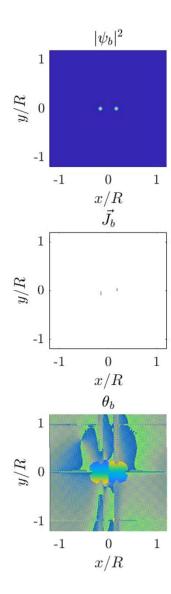


Mutual annihilation of the vortices

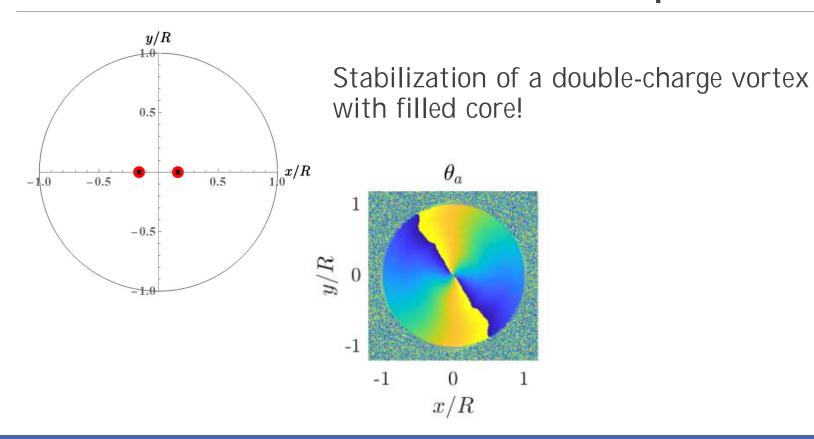
Sound-wave explosion!



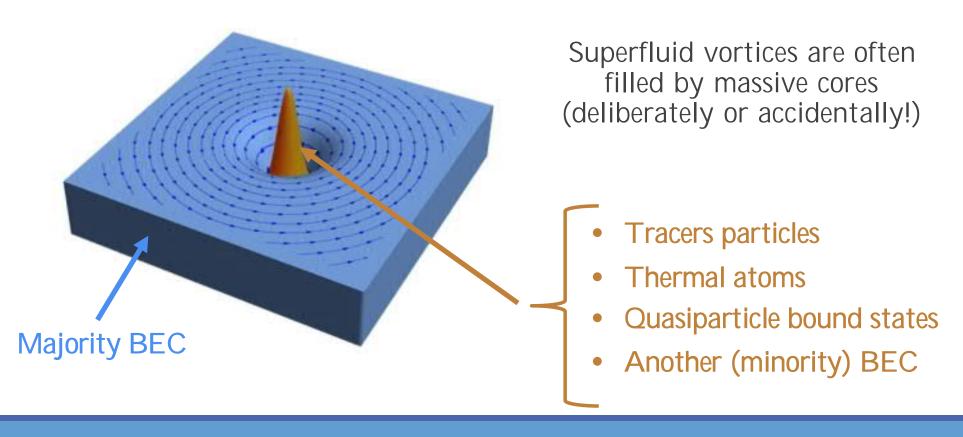




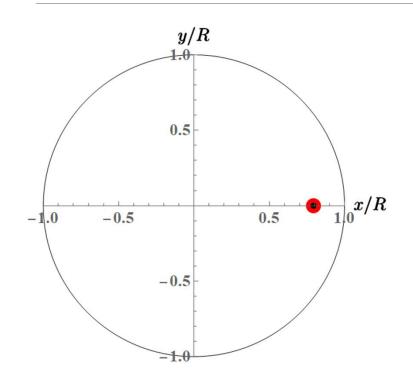
Collision of vortex/vortex pair



Take-home message 1/3



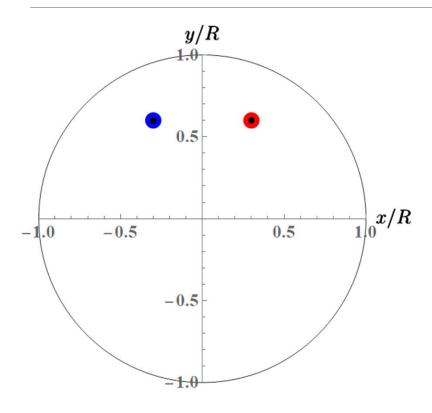
Take-home message 2/3



Usual circular motion of precession +
Small-amplitude radial oscillations

The signature of core mass!

Take-home message 3/3



Massive cores are not only "heavy burdens" but can be used to actively drive the hosting vortices and thus trigger vortex collisions.

Thanks for your attention!

QUESTIONS?

[A. Richaud, V. Penna, R. Mayol, M. Guilleumas, *Phys. Rev. A* 101, 013630 (2020)]

[A. Richaud, V. Penna, A. L. Fetter, *Phys. Rev. A* 103, 023311 (2021)]

[A. Richaud, G. Lamporesi, M. Capone, A. Recati, in preparation]

Info: arichaud@sissa.it