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Introduction
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Polaron system

@ The polaron problem consists in a single impurity immersed in
a Fermi or Bose bath.

@ The first theoretical formulation of the problem backs to
Landau and Pekar [1] who proposed the idea of quasiparticle.

@ The Fermi polaron was studied the first due to the
experimental achievement of Feshbach resonance.

@ The Bose polaron offers the stimulating opportunity of
studying the physics of the impurity in a bath that suffers a
phase transition from a superfluid to a normal gas.

Gerard Pascual Lépez The Bose polaron at finite temperature 2



Introduction
oe

Bose polaron

o Different approaches at zero temperature have been
considered: renormalization group theory [2], quantum Monte
Carlo [3, 4, 5], variational methods [6, 7, 8, 9, 10, 11], and
diagrammatic approaches [12].

@ Including temperature in the previous theoretical approaches is
difficult.

@ There are studies that are only valid at low temperatures [13].
Other analysis show conflicting results [14, 15].

@ Recent experiments studied this system at different
temperatures claiming that the quasiparticle picture
disappears [16].
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Model and Method
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The Hamiltonian of a mobile impurity surrounded by a bath of N
bosons at temperature T is described as follows,

h2 N ) h2

H=—-— 2 _ 2
2mB ) V, 2m/vl+
N
+ > Via(rg) + > Vilri) (1)
i<j i=1

where mg and m; are the mass of the boson bath particles and of
the impurity /.
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Model and Method
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Mathematical formalism of PIMC |

The density matrix that has to be solved is,

P(|o; :lefﬁE" p = _ﬂH. 2
(o) = ze 8 = p="= )

The density matrix can be redefined without the normalisation
constant Z and projected onto the space basis,

p(R1, Ra) = (R1|p|Ry) = (Rile PH|Ry) | (3)

where R; = {ry,rai,--- ,rn,i} is a set of space coordinates of
the N particles of the system.
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Mathematical formalism of PIMC |l

Feynman came up with the following idea,

-BH _ ,—eH  —eH _—eH = _—eH

|
)
)
)
)
Il

p=e

PAa'lfa‘pAa "'/967 (4)

where ¢ = 3/M and M is an arbitrary integer [17].
Projecting onto different space basis,
p(R1, Rmy1; B) =/dR2"'dRM<R1|ffs\R2><R2|ﬁs\R3> -+ (Rm|Pe|Rm11) =

:/dRz"'dRMP(Rl,Rz;E)P(RLRs*;E) - p(Rm, Rmy1:€). (5)
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Approximations to decouple the density matrix |

The Chin approximation (CA) approaches the exponential of the
Hamiltonian as a fourth-order action [18],

efz-:H ~ efulewal e*tl€Ke*V25W172a1 e*tlsKe*VIEWal ef2tosK' (6)

The resulting density matrix is the following,

oz /1 \M
Ri,Rye) = —2_ —— dRiAR
pca(R1, Ra; €) (27m26) 220 / 1A lBeXP|:

N
1 1 1 , 1 ,
— Z (t1 (rig—riaa)®+ E(ri,lA —ri18)° + 27()(’1,13 —ri2) )

e
i=1
N
1%

Z ( V(rij1) +v2V(rj1a) +v1V(rj18) + 51 V(rfj,z))
i<j

a a

- 263U0>\Z (?llFmF + (1 —2a1)|F; 14> + a1|Fi18]* + EllFi,2|2) }

(™
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Boundary conditions

e Diagonal properties i.e. p(R, R; ) = R1 = Rp41.
@ Bosons particles = the density matrix is symmetric under
permutations of {R1,---, Ry},

Ryy1 = PRy, (8)
where P is a permutation of the particles,

{rims1, ramea, - rv v} = {rl,p(l)y F2p2); """ 7rN,p(N)}v 9)

where p(i) is the label of the particle that is in permutation
with the i — th atom.

Gerard Pascual Lépez The Bose polaron at finite temperature 8



Model and Method

L le]

Implementation of PIMC method

Calculating previous integral using Monte Carlo method, with
probability p(R1,- -, Ry)

M
p(Ri,--- ,Rm) = HPCA(R:', Rii1;¢€). (10)

i=1

Figure: Representation of the interaction between two particles.
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The worm algorithm

The new boundary conditions is now Ry+1 = PR;

OBIEZORS
1 SWAP
A\. ‘./ CLOSE {A\"//.k

“"‘\\0/0

Figure: Representation of the permutation sampling using the worm
algorithm.
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Results: Polaron system
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Potentials

@ Repulsive potential

1
V[B(r) X 1
@ Attractive potential
AA—1
V/B(r) = —0427( )

cosh?(ra)’
where the scattering length b,

1 = A > 1 1
ba = - — ~ cot(— - =.
T3 2°°(2)+;1(A+n n>
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Delocalization of particles

Figure: Projection of the positions of the particles in 2D at different
temperatures.
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(o] Yolole}

Polaron Energy
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Figure: Polaron energy as a function of temperature (na® = 10~%).

Gerard Pascual Lépez The Bose polaron at finite temperature 13



Results: Polaron system
000®00

Effective mass and correlation functions

1 | |
0 061 02 03 04 05 06 07

T/T,

Figure: Effective mass of the Bose polaron as a function of temperature
for a system with a/b = 0.06 and na® = 10~>. The empty circle
corresponds to data computed using quantum Monte Carlo methods at
T=0T.[3]
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Fraction of condensed bosons
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Figure: Blue: Ratio of the fraction of condensed bosons between a bath
system (no,g) and an impurity system (ng ;) at a/b = 0.03 and

na® = 1074, Red: Ratio of the superfluid density between a bath system
(ps,g) and an impurity system (ps ;) at the same conditions.
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Quasiparticle Behaviour

T T T
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Figure: Dynamic structure factor as a function of temperature at
goa = 0.16.
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Conclusions

@ We see similar trends for weak interactions in the attractive
branch and also a particular asymmetry between the attractive
and the repulsive branches.

@ We see a competition between the bath, that tries to
condensate all the particles, and the impurity that (slightly)
hinders this condensation due to its interaction with the bath.

e Finally, we agree with [16] that the quasiparticle picture
vanishes close to the critical temperature since we see that
the effective mass tends to the bare mass when the
temperature increases.
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Primitive approximations to decouple the density matrix

Using Baker—Campbell-Hausdorff formula,
pe = e~ (K+V) _ g=eK 4 o=V | —e3[KV] | e KKV (11)

In the primitive approximation (PA), the commutator terms are not
considered,

ppa(Ry, R2; ) :/dR’ (RileK|R"Y (R'|e="|R,) =

_p\2
:/de(4ﬂ_)\€)de/2e,(R14)\:) eff-:V(Rz)(S(Rl o RZ) —
= (4mhe)"IN/2e= (Rlﬁgz)z e—=V(R2) (12)
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Sampling subroutines in open and close configurations

Translation

Staging
o Cut

e Bind

o Move

e Swap
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Properties computed

o Diagonal properties = Energy

Ev _ < 3,1 f: (Rv+j — Rj)(Rm+j—1 — Rwmy))

~N -\ W P YL +
1 M B
+ N ;(R RC)aR [U(Rj+1,Rj;e) + U(R;, Rj_1;¢)]
1 L QU(Rji1, R e)
+ MNJ; 5 > (13)

o Off-diagonal properties

Gerard Pascual Lépez The Bose polaron at finite temperature 26



References
0000

Generalisation of PIMC to two species of particles

@ Changes in the interaction between particles.

@ Particles of different species are distinguishable and, therefore,
permutations can only be performed between particles of the
same type.

© There are two different worms.
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Radial distribution function
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Figure: Radial distribution function of bath-bath particles at different
temperatures (a/b = 0.06 and na® = 10~*). Dashed lines correspond to
systems without the impurity.
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